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EXACT SOLUTIONS AND MATHEMATICAL PROPERTIES

OF BOUNDARY-VALUE PROBLEMS FOR DYNAMIC-DIFFUSION BOUNDARY LAYERS

UDC 532.526+517.946O. A. Frolovskaya

The paper studies boundary-value problems for dynamic-diffusion boundary layers occurring near a
vertical wall at high Schmidt numbers and for dynamic boundary layers whose inner edge is adjacent
to the dynamic-diffusion layers. Exact solutions for boundary layers at small and large times are
derived. The well-posedness of the boundary-value problem for a steady dynamic-diffusion layer is
studied.

We consider the free convection in a viscous fluid near a vertical wall (support) and impurity transport in
the case of growth of a thin film from a solution–melt of semiconducting materials. In this case, the geometry of
the region can be considered constant because the growth rate is assumed to be negligibly small (in practice, the
film thickness increases by 10 µm for 1 h). If the average impurity concentration in the solution is not equal to
the equilibrium concentration, a zone of reduced impurity concentration is formed near the support (in dilution, a
zone of increased concentration is formed). We assume that the density of the solution depends on the impurity
concentration, and the kinematic viscosity ν and the diffusivity D satisfy the condition D � ν. For example, for
growth of thin films from a solution–melt of semiconducting materials, ν is of the order of 10−2–10−3 cm2/sec
and D is of the order of 10−5 cm2/sec. As a result, the fluid motion is concentrated in a thin layer adjacent to the
support, and the impurity concentration differs from the average value in an even thinner layer. At high Schmidt
numbers Sc = ν/D, a dynamic-diffusion boundary layer with thickness of order (Re2Sc)−1/4 (Re is the Reynolds
number) can be distinguished in the flow region. Kuznetsov and Frolovskaya [1] obtained equations of special
dynamic-diffusion layers in free convection near a vertical wall for the cases where the motion is described by the
classical Oberbeck–Boussinesq model and the microconvection model. The microconvection model was developed
by Pukhnachev [2] to study convection in regions of small extent and in low gravitational fields or rapidly changing
temperature fields. In these boundary layers, the buoyancy and viscous forces are significant and the inertial forces
and the longitudinal pressure gradient are negligible. In this case, no restrictions are imposed on the Reynolds
number.

Outside the dynamic-diffusion boundary layer, the impurity concentration differs only slightly from the
average, and the flow pattern depends on the Reynolds number. If Re �

√
Sc, outside the diffusion layer, the

Stokes approximation can be used. For Re ∼
√

Sc, the flow is described by the Navier–Stokes equations. If
Re �

√
Sc, another purely dynamic boundary layer with thickness of order (Sc/Re2)1/4 is formed in the flow

region. This layer is adjacent to the dynamic-diffusion layer at the inner edge and to the state of rest at the outer
edge.

Thus, the flow pattern is as follows. An ultrathin dynamic-diffusion boundary layer is adjacent to the
support, and the concentration in this layer is not equal to the average. At some distance from the wall there is a
fluid layer in equilibrium. Between these layer there is a thin dynamic layer, in which the impurity concentration
differs slightly from the average and, in addition, fluid motion is present. To determine the velocity, concentration,
and pressure fields, one need first solve the problem for the dynamic-diffusion layer (without the equation for
pressure) and to calculate the external representation for the velocity. After that, using this representation as the
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boundary condition, it is necessary to solve the problem for the external asymptotic form (for the particular case),
to determine the dynamic-layer pressure, and, finally, to calculate the pressure in the dynamic-diffusion layer.

Kuznetsov and Frolovskaya [1] derived boundary-layer equations for the Oberbeck–Boussinesq model and
the microconvection model, constructed self-similar solutions, considered the initial asymptotic form of dynamic-
diffusion boundary layers, and obtained formulas for mass transfer. Frolovskaya [3] studied unsteady boundary
layers, derived self-similar solutions for these layers, and showed that a countercurrent flow zone occurs in a purely
dynamic boundary layer. Unlike in the case of a classical boundary layer [4], the external representation for
velocity in a dynamic-diffusion layer is determined in the course of solution of the problem and not from the
condition of joining with the external solution. The dynamic-layer problem differs from the classical problem in
that the longitudinal velocity is specified at the inner rather than at the outer edge. All the equations obtained are
nonstandard. Therefore, the question of well-posedness of the main boundary-value problems arises.

In the present paper, we derive self-similar solutions for an unsteady dynamic-diffusion boundary layer,
consider initial asymptotic relations in the problem of fluid motion in a dynamic boundary layer whose inner edge
is adjacent to the dynamic-diffusion layer, and study the resolvability of the boundary-value problem for a steady
dynamic-diffusion boundary layer.

Self-Similar Solutions for an Unsteady Boundary Layer. The problem for an unsteady dynamic-
diffusion boundary layer in the Oberbeck–Boussinesq model is to find the u and v components of the velocity v,
the concentration c, and the deviation from the hydrostatic pressure p in the region y > 0 that satisfy the initial
boundary-value problem [3]:

ν
∂2u

∂y2
= gβ(c− c∞),

1
ρ0

∂p

∂y
= ν

∂2v

∂y2
,

∂u

∂x
+
∂v

∂y
= 0,

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
,

(1)
c|t=0 = c∞, c|y=0 = f(t, x), u|y=0 = v|y=0 = 0,

c −→
y→∞

c∞, u −→
y→∞

u∞(t, x).

Here β = const > 0, ρ0 and c∞ are the average density and concentration of the solution, respectively, f(t, x) is a
specified function, and u∞(t, x) is determined in the course of solution of the problem. It is seen that the velocity
components and the concentration are determined independently of the pressure.

For the problem (1), self-similar solutions can be derived if f(t, x) = c∞ − αt−2 (α = const > 0). In this
case, we seek a solution in the form

u = α
gβD

νt
U(ξ), v = 0, c− c∞ = αt−2(C(ξ)− 1), ξ =

y√
Dt

.

To determine U(ξ) and C(ξ), we have the problem
U ′′ = C − 1, C ′′ + (ξ/2)C ′ + 2(C − 1) = 0,

U(0) = 0, C(0) = 0, U ′ −→
ξ→∞

0, C −→
ξ→∞

1,

whose solution is written as

C(ξ) = 1 + ξ(ξ2 − 6)e−ξ
2/4

(
γ + 6

∞∫
ξ

eη
2/4

η2(η2 − 6)2
dη

)
,

where γ is an arbitrary constant;

U(ξ) =

ξ∫
0

∞∫
η

(1− C(ω)) dω dη.

From this, for the external representation of the velocity, we have

u∞(t) = α
gβD

νt
U∞, U∞ =

∞∫
0

∞∫
η

(1− C(ω)) dω dη.

Fluid Motion for Small Times. We consider the initial process of film growth. Kuznetsov and Frol-
ovskaya [1] studied the asymptotic form of the problem in the time interval [0, τ ] as τ → 0 for the Oberbeck–
Boussinesq and the microconvection model. In this case, the velocity components u and v and the concentration c
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were sought in the form u = u(t, y), v ≡ 0, and c = c(t, y) under the assumption that at small times, these parame-
ters are independent of the longitudinal coordinate (the dependence on x can develop only with time). In this case,
the solution is written in quadratures.

In the Oberbeck–Boussinesq model for high Reynolds numbers, a purely dynamic boundary layer is formed in
the flow region. The inner edge of this layer is adjacent to the dynamic-diffusion layer, and its outer edge neighbors
the state of rest. At small times, the motion in a dynamic layer of thickness

√
νt is described by the equation

∂u

∂t
= ν

∂2u

∂y2
. (2)

The initial boundary conditions are specified by

u
∣∣∣
t=0

= 0, u
∣∣∣
y=0

= u∞(t, x), u −→
y→∞

0. (3)

The function u∞(t, x) is the external representation of the velocity, which is determined from the solution of the
problem for a dynamic-diffusion boundary layer [1]:

u∞(t) =
4Dgβ(c∞ − c∗)

ν
tÛ∞, Û∞ = −

∞∫
0

∞∫
ω

ĉ(α) dα dω,

where D, g, β, c∞, and c∗ are positive constants (c∗ < c∞) and ĉ = (c− c∞)/(c∞ − c∗).
In the dynamic-layer problem, we assume that the solution is independent of the longitudinal component

x. In this case, the problem reduces to the problem of boundary-layer development in time with gradual constant
acceleration. We seek a solution of the problem (2), (3) in the form

u =
4Dgβ(c∞ − c∗)Û∞

ν
tU(ζ), v ≡ 0, ζ =

y

2
√
νt
.

Then, to determine U(ζ), we have the problem

U ′′ + 2ζU ′ − 4U = 0,

U(0) = 1, lim
ζ→∞

U(ζ) = 0.

The solution of this problem is the function

U(ζ) = (2ζ2 + 1)

(
1− 2√

π

ζ∫
0

e−α
2
dα

)
− 2√

π
ζe−ζ

2
.

Resolvability of the Boundary-Value Problem. We study the resolvability of the boundary-value
problem for the equations of a steady-state dynamic-diffusion boundary layer.

Oleinik et al. [5] studied this problem most fully using mathematical theory for boundary layers in an
incompressible fluid. Problems for a temperature boundary layer were studied in [6, 7]. Dzhuraev [6] considered
the boundary-value problem of continuation of a steady-state boundary layer of an incompressible fluid in forced
convective flow. Khusnutdinova [7] proved the existence of a solution of the temperature boundary-layer equations
for an incompressible fluid taking into account the lifting force.

In the Oberbeck–Boussinesq model, the boundary-layer equations have the form [1]

∂u

∂x
+
∂v

∂y
= 0, ν

∂2u

∂y2
= gβ(c− c∞), u

∂c

∂x
+ v

∂c

∂y
= D

∂2c

∂y2
. (4)

The main boundary-value problem is to find solutions of system (4) in the region G = {0 < x < A, 0 < y < ∞}
subject to the conditions

c
∣∣∣
x=0

= c0(y), c
∣∣∣
y=0

= c∗, u
∣∣∣
y=0

= v
∣∣∣
y=0

= 0,
(5)

u −→
y→∞

u∞(x), c −→
y→∞

c∞.

In the Mises variables

x = x, ψ = ψ(x, y), u = ψy, v = −ψx, ψ(x, 0) = 0
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(ψ is a stream function), the main boundary-value problem for the equations of dynamic-diffusion boundary layer
(4), (5) is as follows: in the region R = {0 < x < A, 0 < ψ <∞}, it is required to find a solution of the system of
differential equations

√
ω ωψψ = χ(c− c∞), cx = D(

√
ω cψ)ψ, (6)

subject to the boundary conditions

c
∣∣∣
x=0

= c0(ψ), ω
∣∣∣
ψ=0

= 0, c
∣∣∣
ψ=0

= c∗,
(7)

ω(x, ψ) −→
ψ→∞

ω∞(x), c(x, ψ) −→
ψ→∞

c∞.

Here ω(x, ψ) = u2(x, y) and c(x, ψ) = c(x, y). The positive quantities χ, D, c∗, and c∞ are assumed to be constant
(c∗ < c∞).

In contrast to the system considered in [7], system (6) is nonstandard. In this system, one of the equations
is a quasilinear parabolic equation which degenerates at the boundary of the region, and the other equation is a
second-order ordinary differential equation. In this case, one of the independent variables is treated as a parameter.
In addition, the outer flow velocity ω∞(x) is not specified but is determined in the course of solution of the
problem. Therefore, it can happen that the external representation of the solution is unbounded, which is physically
unrealistic. Systems of this type have not been studied yet.

Let the initial concentration distribution c0(ψ) satisfy the following conditions:
— c0(ψ) > c∗ for ψ > 0 and c0(0) = c∗; c0(ψ)→ c∞ for ψ →∞ and c′0(ψ) > 0,

N/(1 + ψ)2+α 6 c∞ − c0(ψ) 6 K/(1 + ψ)2+α

(0 < α < 1 and N and K are positive constants);
— c0(ψ), c′0(ψ), and c′′0(ψ) are bounded for 0 6 ψ < ∞ and satisfy the Hölder condition and the matching

condition
∂

∂ψ
(
√
ω c′0(ψ)) = 0 for x = 0, ψ = 0.

We introduce the following notation: R̄ is the closure of the region R, L(h) ≡ D(
√
ω hψ)ψ − hx, and

Γ = (∂R ∩ {x = 0}) ∪ (∂R ∩ {ψ = 0}).
Theorem 1. For any finite A > 0 in the region R, the boundary-value problem (6), (7) has a solution ω, c

that ehxibits the following properties: c(x, ψ), ω(x, ψ), and ωψ(x, ψ) are continuous and bounded in R̄; ω(x, ψ) > 0
for ψ > 0; k1ψ 6 ω(x, ψ) 6 k2ψ for 0 6 ψ 6 ψ0; 0 < ωψ < k3, −k4 <

√
ω ωψψ < 0, 0 < c(x, ψ) < k5 in R; ω(x, ψ) is

bounded as ψ →∞; cx, cψ, cψψ, and ωψψ are bounded in any inside closed subregion of the region R, in which the

constants ki (i = 1, . . . , 5) depend on the data of the problem; ψ0 is a small constant.

Equation (6) for c in the region R is a parabolic equation that which degenerates at ψ = 0. To prove
the existence of a solution of the problem (6), (7), we consider the following iterative process. Let the initial
function ω(0)(x, ψ) = ε + tanh ψ (ε > 0) be known. Knowing ω(0)(x, ψ), we determine c(0)(x, ψ) that satisfies the
equation c

(0)
x = D(

√
ω(0) c

(0)
ψ )ψ and the boundary conditions c(0)(0, ψ) = c0(ψ) and c(0)(x, 0) = c∗. Then, we move

to the next iteration step. We find ω(n)(x, ψ) by the formula

ω(n)(x, ψ) =
1
n
− χ

ψ∫
0

∞∫
z

c(n−1)(x, t)− c∞√
ω(n−1)(x, t)

dt dz (8)

and determine c(n)(x, ψ) as a solution of the equation

c(n)
x = D(

√
ω(n) c

(n)
ψ )ψ (9)

subject to the conditions

c(n)
∣∣∣
x=0

= c0(ψ), c(n)
∣∣∣
ψ=0

= c∗, (10)

where n = 1, 2, . . . .
We show that the solutions c(n)(x, ψ) and ω(n)(x, ψ) of the problem (8)–(10) exist in the region R and

as n → ∞, the functions c(n)(x, ψ) and ω(n)(x, ψ) reduce to the solution of the problem (6), (7). Let Mi denote
positive constants that do not depend on n.
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The existence of a solution of problem (8)–(10) with the properties described in the theorem is proved by
induction over n. We assume that for n < m, the solution c(m−1)(x, ψ), ω(m−1)(x, ψ) of the problem (8)–(10) exists
and the following inequalities are satisfied:

ω(m−1)(x, ψ) > 0 for ψ > 0, ω
(m−1)
ψψ (x, ψ) < 0,

1/(m− 1) +M1ψ 6 ω
(m−1)(x, ψ) 6 1/(m− 1) +M2ψ (0 < ψ 6 ψ0),

M3 < ω(m−1)(x, ψ) < M4 (ψ > ψ0), 0 < ω
(m−1)
ψ (x, ψ) < M5, (11)

c∗ + ϕ(ψ)e−βx 6 c(m−1)(x, ψ) 6 c∞,

−M6e1/(1−λx)

(1 + ψ)2+α
6 c(m−1)(x, ψ)− c∞ 6 −

M7(1 + x)−γ

(1 + ψ)2+α
,

c(m−1)(x, ψ) 6 c∗ +M8

√
ψ (0 < ψ < ψ0)

[ϕ(ψ), α, β, λ, and γ are determined below]. We show that these estimates are valid for n = m as well.
With allowance for estimates (11), from (8), we find that ω(m) > 1/m > 0 as ψ > 0.
Lemma 1. For the function ω(m)(x, ψ), the following inequality is valid:

1/m+M1ψ 6 ω
(m)(x, ψ) 6 1/m+M2ψ. (12)

Here 0 6 ψ 6 ψ0.

Proof. From (8), using (11), we obtain

ω(m)(x, ψ) >
1
m

+ χ

ψ∫
0

∞∫
z

M7(1 + x)−γ√
ω(m−1)(x, t)(1 + t)2+α

dt dz

>
1
m

+
χM7(1 + x)−γ√

M4

ψ∫
0

∞∫
z

1
(1 + t)2+α

dt dz >
1
m

+
χM7(1 +A)−γ√
M4α(1 + α)

(
1− 1

(1 + ψ)α
)
>

1
m

+M1ψ

for small ψ, and

ω(m)(x, ψ) 6
1
m

+ χ

ψ∫
0

∞∫
z

M6e1/(1−λx)√
ω(m−1)(x, t)(1 + t)2+α

dt dz

6
1
m

+
χM6e1/(1−λx)

√
M3

ψ∫
0

∞∫
z

1
(1 + t)2+α

dt dz 6
1
m

+
χM6e√

M3α(1 + α)

(
1− 1

(1 + ψ)α
)
6

1
m

+M2ψ

for 0 6 ψ 6 ψ0. Lemma 1 is proved.
From (12) it follows that ω(m) > M3 for ψ > ψ0. From (8), using this estimate and (11), we have ω(m) < M4.

Indeed,

ω(m)(x, ψ) 6
1
m

+ χ

ψ∫
0

∞∫
z

M6e1/(1−λx)√
ω(m−1)(x, t)(1 + t)2+α

dt dz

6
1
m

+
χM6e√
M3

ψ∫
0

∞∫
z

1
(1 + t)2+α

dt dz =
1
m

+
χM6e

α(1 + α)
√
M3

(
1− 1

(1 + ψ)α
)

6 1 +
χM6e

α(1 + α)
√
M3

(
1− 1

(1 + ψ)α
)
< M4.

Thus, M3 < ω(m)(x, ψ) < M4 for ψ > ψ0, i.e., the function ω(m)(x, ψ) takes finite values as ψ →∞.
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From the estimates (11), it also follows that ω(m)
ψ > 0 and ω

(m)
ψψ < 0. We show that ω(m)

ψ (x, ψ) is bounded
from above. From (8), taking into account the estimates (11), we obtain

ω
(m)
ψ (x, ψ) = −χ

∞∫
ψ

c(m−1)(x, t)− c∞√
ω(m−1)(x, t)

dt

6 χ

∞∫
ψ

M6e1/(1−λx)√
ω(m−1)(x, t)(1 + t)2+α

dt 6
χM6e

(1 + α)
√
M3

1
(1 + ψ)1+α

< M5.

Lemma 2. If a positive solution c(m)(x, ψ) of the problem (9), (10) exists in the region R, the following a
priory estimate holds:

c(m)(x, ψ) > c∗ + ϕ(ψ)e−βx. (13)

Here

ϕ(ψ) =
{

A1ψ for ψ ∈ (0, 1),
A1(1 + tanh (ψ − 1)) for ψ ∈ (1,∞)

[A1 = min{c0(1)/3, c′0(0)/3}] and β = const > 0.
Proof. We consider the function Q(m) = c(m)(x, ψ)− c∗ − ϕ(ψ)e−βx. From this, expressing c(m)(x, ψ) and

substituting it into (9), we obtain the equation for Q(m):

L(Q(m)) = −e−βx
[
βϕ(ψ) +D

√
ω(m) ϕ′′(ψ) +Dω

(m)
ψ ϕ′(ψ)/(2

√
ω(m))

]
. (14)

For 0 < ψ 6 ψ0 < 1, we have

L(Q(m)) = −e−βxA1

[
βψ +Dω

(m)
ψ /(2

√
ω(m))

]
.

For ψ > 1, the function ϕ(ψ) > A1 > 0, 0 < ϕ′(ψ) < A1, and −A1 < ϕ′′(ψ) 6 0. If β is large enough, the expression
in square brackets in (14) is positive. Hence, L(Q(m)) 6 0. On the boundary Γ = {x = 0, ψ = 0}, we have

Q(m)
∣∣∣
x=0

= c0(ψ)− c∗ − ϕ(ψ) > 0, Q(m)
∣∣∣
ψ=0

= 0.

If c(m)(x, ψ) exists in the region R, Q(m)|Γ > 0, |Q(m)| < M0, and L(Q(m)) 6 0. In the region R, the
function Q(m)(x, ψ), which is nonnegative on Γ, satisfies the linear parabolic equation L(Q(m)) = F , where F 6 0.
By the maximum principle [5, 8], Q(m) > 0 everywhere in R, and, hence, estimate (13) holds. Lemma 2 is proved.

By virtue of the estimate ω(m)(x, 0) > 0, Eq. (9) for c(m)(x, ψ) is a linear parabolic equation, and the
well-known theorems of the existence of a solution of the first boundary-value problem [8] can be applied to this
equation. This solution has first derivatives with respect to ψ and x and the second derivative with respect to ψ,
which satisfy the Hölder condition for the closed region R̄. We obtain estimates for c(m)(x, ψ) in the region R that
are uniform with respect to m.

Lemma 3. In the region R, the following estimate holds:

c(m)(x, ψ) 6 c∞.

Proof. In Eq. (9), we substitute c(m)(x, ψ) = c∞ + c̄(m)eαx, where α = const > 0. Then, c̄(m) satisfies the
equation L(c̄(m)) = αc̄(m). At the positive maximum of the function c̄(m) = (c(m)− c∞)e−αx, if it is reached within
the region R, the inequality c̄(m) 6 0 is valid. On the boundary Γ, we have

c̄(m)
∣∣∣
x=0

= c0(ψ)− c∞ 6 0, c̄(m)
∣∣∣
ψ=0
6 0.

Hence, c̄(m)(x, ψ) 6 0 everywhere in R; therefore, c(m)(x, ψ) 6 c∞ everywhere in R. The lemma is proved.
Lemma 4. In the region R, for ψ > ψ0, the following estimates hold:

−M6e1/(1−λx)

(1 + ψ)2+α
6 c(m)(x, ψ)− c∞ 6 −

M7(1 + x)−γ

(1 + ψ)2+α
, (15)

where 0 < α < 1, λ = const > 0 (λ 6= 1/x), and γ = const > 0.
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Proof. Let S(m)(x, ψ) = c(m)(x, ψ)− c∞. Then, S(m)(x, ψ) satisfies the equation L(S(m)) = 0. We consider
the function

Q(m)(x, ψ) = S(m)(x, ψ) +M6e1/(1−λx)/(1 + ψ)2+α

and

L(Q(m)) =
[D(2 + α)(3 + α)

√
ω(m)

(1 + ψ)2
−

D(2 + α)ω(m)
ψ

2(1 + ψ)
√
ω(m)

− λ

(1− λx)2

]M6e1/(1−λx)

(1 + ψ)2+α
.

If λ is large enough, L(Q(m)) 6 0. On the boundary Γ1 = {x = 0, ψ = ψ0}, we have

Q(m)
∣∣∣
x=0

= c0(ψ)− c∞ +
M6e

(1 + ψ)2+α
> 0, Q(m)

∣∣∣
ψ=ψ0

= c(x, ψ0)− c∞ +
M6e1/(1−λx)

(1 + ψ0)2+α
> 0

for a large M6. Then, by virtue of the inequalities Q(m)|Γ1 > 0 and |Q(m)| 6 M9, L(Q(m)) 6 0, (x, ψ) ∈ R, the
function Q(m)(x, ψ) is nonpositive over the entire region R.

Let us prove the upper estimate. We consider the function

P (m)(x, ψ) = S(m)(x, ψ) +M7(1 + x)−γ/(1 + ψ)2+α,

L(P (m)) =
[D(2 + α)(3 + α)

√
ω(m)

(1 + ψ)2
−

D(2 + α)ω(m)
ψ

2(1 + ψ)
√
ω(m)

+
γ

1 + x

]M7(1 + x)−γ

(1 + ψ)2+α
.

For sufficiently large γ, L(P (m)) > 0. If 1/γ and M7 are sufficiently small, then P (m) 6 0 at x = 0 and ψ = ψ0.
Indeed,

P (m)
∣∣∣
x=0

= c0(ψ)− c∞ +
M7

(1 + ψ)2+α
6 0, P (m)

∣∣∣
ψ=ψ0

= c(x, ψ0)− c∞ +
M7(1 + x)−γ

(1 + ψ0)2+α
6 0.

Since P (m)
∣∣∣
Γ1

6 0 and |P (m)| 6M10, L(P (m)) > 0, then, by the maximum principle, P (m)(x, ψ) 6 0 over the entire

R, and, hence, estimates (15) are correct. The lemma is proved.
Lemma 5. In the region R1 = {0 < x < A, 0 < ψ < ψ0), the following estimate is valid:

c(m)(x, ψ) 6 c∗ +M8

√
ψ. (16)

Proof. We consider the function S(m)(x, ψ) = c(m)(x, ψ)− c∗ −M8

√
ψ satisfying the equation

L(S(m)) =
D

4
√
ω(m)

[ω(m)

ψ2
−
ω

(m)
ψ

ψ

]
M8

√
ψ.

We show that the expression in the square brackets is nonnegative. Taylor expansion of the functions ω(m)(x, ψ)
and ω

(m)
ψ (x, ψ) in the neighborhood of zero yields

ω(m)(x, ψ) = ω(m)(x, 0) + ω
(m)
ψ (x, 0)ψ + ω

(m)
ψψ (x, 0)ψ2/2 + o(ψ2),

ω
(m)
ψ (x, ψ) = ω

(m)
ψ (x, 0) + ω

(m)
ψψ (x, 0)ψ + o(ψ).

Then,

ω(m)(x, ψ)− ψω(m)
ψ (x, ψ) = 1/m− ω(m)

ψψ (x, 0)ψ2/2 + o(ψ2) > 0

because ω(m)
ψψ < 0. Therefore, for small ψ, L(S(m)) > 0. On the boundary, we have

S(m)
∣∣∣
x=0

= c0(ψ)− c∗ −M8

√
ψ 6 0,

S(m)
∣∣∣
ψ=0

= 0, S(m)
∣∣∣
ψ=ψ0

= c(m)(x, ψ0)− c∗ −M8

√
ψ0 6 0

if M8 is sufficiently large.
Since S(m)|∂R1 6 0, |S(m)| 6M11, and L(S(m)) > 0, then, by the maximum principle, S(m)(x, ψ) 6 0 in R1,

i.e., the estimate (16) is correct. Lemma 5 is proved.
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The iterative process can continue for an indefinitely long time. In every iteration step, there is a solution
of problem (8)–(10) with the required properties.

Let δ > 1 be an arbitrary number. We consider the region Rδ = {0 < x < A, 1/δ < ψ < δ}. In this region,
K1 <

√
ω(n) < K2, where Ki are positive constants that depend on δ but do not depend on n, and ω(n)

ψ is uniformly
bounded in n. Because the coefficients of Eq. (9) are separated uniformly (in n) from zero and infinity, the sequence
{c(n)(x, ψ)} is compact. Therefore, we can distinguish a subsequence {c(nk)(x, ψ)} that converges uniformly to
the function c(x, ψ) which is continuous in Rδ, as nk → ∞. The derivatives ∂c(n)/∂x, ∂c(n)/∂ψ, and ∂2c(n)/∂ψ2

converge uniformly to the corresponding derivatives of the function c(x, ψ) in each finite region [0, A] × [1/δ, δ].
By virtue of the arbitrariness of δ, the limiting function c(x, ψ) satisfies the second equation in (6) over the entire
region R.

Finally, we prove that c(x, ψ) satisfies conditions (7). According to the estimates (13) and (16), we have

c∗ 6 c(x, ψ) 6 c∗ +M8

√
ψ. (17)

In inequality (17), passage to the limit as ψ → 0 proves that lim
ψ→0

c(x, ψ) = c∗ exists. As in [6], it can be shown that

the function c(x, ψ) also satisfies the last condition in (7).
From the estimates M1ψ 6 ω(x, ψ) 6M2ψ, it follows that lim

ψ→0
ω(x, ψ) = 0.

Thus, the functions ω(x, ψ) and c(x, ψ) are a solution of the boundary-value problem (6), (7). From esti-
mates (17), it follows that the function c(x, ψ) is continuous up to the boundary. The continuity and boundedness
of the derivatives cx, cψ, and cψψ in every inside subregion of the region R follow from the properties of solutions of
linear parabolic equations. The continuity of ω and ωψ up to the boundary and the boundedness of ωψψ in every
inside closed subregion of the region R follows from the definition of the function ω(x, ψ) (8) and the properties of
the function c(x, ψ). The theorem is proved. After converting to the physical variables (x, y), the solution in the
Mises variables will have all the necessary properties [5].

The work was supported by the Russian Foundation for Fundamental Research (Grant No. 01-01-00782) and
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